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Riemann’s non-differentiable function is a celebrated example of a continuous but almost 
nowhere differentiable function. There is strong numeric evidence that one of its complex 
versions represents a geometric trajectory in experiments related to the binormal flow or 
the vortex filament equation. In this setting, we analyse certain geometric properties of 
its image in C. The objective of this note is to assert that the Hausdorff dimension of its 
image is no larger than 4/3 and that it has nowhere a tangent.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La célèbre fonction non différentiable de Riemann est une fonction continue, mais 
presque nulle part dérivable. Des simulations numériques montrent qu’une de ses versions 
complexes représente une trajectoire temporelle dans le cadre de l’équation du flot 
binormal, aussi connue sous le nom de Vortex Filament Equation. Par conséquent, on analyse 
certaines propriétés géométriques de son image dans C. Dans cette note, on affirme que 
la dimension de Hausdorff de l’image n’est jamais plus grande que 4/3 et qu’elle n’a pas 
de tangentes.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Riemann’s non-differentiable function

R(x) =
∞∑

n=1

sin (n2x)

n2
, x ∈ R,
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Fig. 1. Comparison between the images of [0,1/(2π)] by φ and φD as subsets of C.

is a classic example of a continuous but almost nowhere differentiable function. It was proposed by Riemann in the 1860s 
and collected by Weierstrass in his famous speech [15] at the Prussian Academy of Sciences in Berlin in 1872. Since then, it 
has been studied analytically and in various forms [5,8–11,13], and some results concerning its graph have been obtained [1,
12]. Generalisations in the exponents of the phase and the denominator of R have also been analysed [2,3,14]. Surprisingly, 
recent studies suggest that R has a intrinsic geometric nature related to physical experiments. De la Hoz and Vega [4]
showed that a complex generalisation,

φ(t) =
∞∑

k∈Z

e−4π2ik2t − 1

−4π2k2
, t ∈ R, (1.1)

is related to the temporal trajectory of a vortex filament in the context of the binormal flow. This flow is modelled by the 
Vortex Filament Equation, an evolution equation for a curve X :R2 →R3, X = X(s, t), given by

X t = X s × X ss, X(s,0) = X0(s),

where t represents time and s is the arclength parameter. Assume that X M is the solution corresponding to the initial 
datum given by a planar regular polygon of M ∈N sides. Then, strong numeric evidence was given that X M(0, t) converges 
to φ when M → ∞, after some proper rescaling. Hence, the study of the geometry of Riemann’s non-differentiable function 
has a physical justification and goes beyond the mere mathematical curiosity.

Duistermaat [5] studied a simpler complex generalisation of R ,

φD(t) =
∞∑

n=1

eiπn2t

iπn2
, Re φD(t) = 1

π
R(πt),

which is 2-periodic and satisfies φ(t) = −i φD(−4πt)/2π + it + 1/12. He gave its asymptotic behaviour around points corre-
sponding to rational numbers. While it is clear that φ and φD share most analytic properties, the binormal flow experiment 
shows that φ and its image in the complex plane are the natural objects to study geometrically instead of φD . The difference 
between the image of both functions can be appreciated in Fig. 1.

In this note, we assert that the image φ(R) has a Hausdorff dimension not greater than 4/3 and that when interpreted as 
a trajectory, it has nowhere a tangent. The reader may check [6] and [7] for the detailed proofs. As a preliminary comment, 
we remark that unlike φD , φ is not periodic but satisfies φ(t + 1/(2π)) = φ(t) + i/(2π). Thus, it is enough to analyse the set 
φ([0, 1/(2π)]), and it is convenient to scale the variable as t = tx = x/(2π) where x ∈ (0, 1).

2. Hausdorff dimension

As one can see in Fig. 1a, the set φ([0, 1/(2π)]) has self-similar features, which is usually an indicator of fractality. 
A non-trivial upper bound for its Hausdorff dimension is given in the following theorem, whose complete proof can be 
checked in [6].
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Theorem 2.1. Let φ be Riemann’s non-differentiable function (1.1). Then,

1 ≤ dimH φ(R) ≤ 4

3
.

While the lower bound follows because φ is a continuous and non-constant curve, the proof of the upper bound consists 
in covering the set of image points φ(tρ) corresponding to irrationals ρ ∈ R \ Q. If {pn/qn} are the continued fraction 
approximations to ρ , then it is well-known that |ρ − pn/qn| < q−2

n . This error matches the range of the following estimate, 
a consequence of the asymptotic behaviour of φ around rationals, which can be essentially deduced from [5].

Lemma 2.2. There exists a constant C > 0 such that for every irreducible fraction p/q,

∣∣φ(tp/q + h) − φ(tp/q)
∣∣ ≤ C

√|h|√
q

, whenever |h| ≤ 1

q2
.

Choose then h = ρ − pn/qn so that the image of the set I = 1
2π

(
(0,1) ∩ I

)
is covered by

φ(I) ⊂
⋃

1≤p<q
gcd(p,q)=1

q≥Q 0

B

(
φ(tp/q),

C

q3/2

)
, ∀Q 0 ∈N. (2.1)

Let α > 0 and δ > 0. Defining Q δ = �(C/δ)2/3� + 1, the above cover gives an upper bound,

Hα
δ (φ(I)) ≤ Cα

∞∑
q=Q δ

1

q3α/2−1
,

for the auxiliary quantities Hα
δ . If α > 4/3, the geometric series converges, so taking limits δ → 0 implies that the 

α-Hausdorff measure is Hα(φ(I)) = 0. Consequently, the dimension can be no larger than 4/3.
The same procedure leads to a more general result connected with the remarkable results of Jaffard [13]. Recall that we 

say that φ is α-Hölder in a point x0, and write φ ∈ Cα(x0), when there is a polynomial P of degree at most α such that 
|φ(x0 + h) − P (h)| ≤ C |h|α for small enough h and some C > 0. Define α(x0) the Hölder exponent of φ at x0 and the sets 
Dβ where φ has exponent β as

α(x0) = sup{α | φ ∈ Cα(x0)}, Dβ = {x ∈ R | α(x) = β}.
Jaffard [13] proved that φ is a multifractal function in the sense that

dimH Dα =
⎧⎨
⎩

4α − 2, α ∈ [1/2,3/4],
0, α = 3/2,

−∞, otherwise,

and he gave a characterisation of the sets Dα when 1/2 < α < 3/4 in terms of the rate of convergence of continued 
fraction approximations. Indeed, these sets are exclusively formed by points tρ , where ρ is irrational. Let {pn/qn}n∈N be 
the sequence of continued fraction approximations to ρ and define γn > 2 and γ (ρ) as∣∣∣∣ρ − pn

qn

∣∣∣∣ = 1

qγn
n

, γ (ρ) = lim sup
n→∞

{γn | qn ≡ 0,1,3 (mod 4)}.

Then, α(tρ) = 1/2 + 1/(2γ (ρ)). By Lemma 2.2, this relationship allows us to reduce the radii of the balls in (2.1) to cover 
φ(Dα) and therefore to prove the following result.

Theorem 2.3. Let φ be Riemann’s non-differentiable function in (1.1). Then,

dimH φ(Dα) ≤ dimH
⋃
β≤α

φ(Dβ) ≤ 4α − 2

α

for every α ∈ [1/2, 3/4].
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Fig. 2. The cone S(x,V ,ϕ).

3. Tangents

Since φ(R) is expected to be a representative of temporal trajectories in a binormal flow experiment, one may wonder if 
it has well-defined directions in some sense. Studying whether it has tangents or not from the geometric perspective seems 
most natural. The main result in this section is the following.

Theorem 3.1. Riemann’s non differentiable function φ , interpreted as a geometric trajectory represented by its image φ(R), has 
nowhere a tangent.

This result is remarkable in two aspects. Hardy [10] and Gerver [8,9] showed that φ is differentiable only in tp/q where 
p/q is an irreducible rational with q ≡ 2 (mod 4), so one expects to have a tangent in some sense. However, a spiral-like 
pattern can be seen in the point φ(t1/2) in the right-hand side of Fig. 1a. The same happens in all φ(tp/q) alike. This 
phenomenon arises because φ′(tp/q) = 0, a cancellation very particular of φ that does not happen in the case of φD . For the 
rest of rationals, φ is not differentiable in tp/q and indeed no tangents exist in φ(tp/q). However, these points seem to have 
well-defined right-sided and left-sided tangents, which differ by a right angle. This is suggested by the right-angled corners 
clearly appreciated in Fig. 1a. Last, no immediate conclusion for irrationals can be deduced from Fig. 1a.

The concept of tangent has to be determined when working with irregular sets like φ(R), the image of an almost 
nowhere differentiable function. In the case of such irregular sets F ⊂Rn , geometric measure theory supplies useful defini-
tions. In plain terms, if dimH F = s, F is said to have a tangent in x ∈ F in direction V ⊂ Sn−1 if it is concentrated in a cone 
centred at x with direction V and arbitrarily small opening angle, when being close enough to x. Concentration is measured 
in terms of the s-Hausdorff measure. Since the Hausdorff dimension of φ(R) is unknown, we adapt this definition using 
the 1-Hausdorff content.

Definition 3.2. The 1-Hausdorff content of a set F ⊂R2 is

H1∞(F ) = inf

{∑
i

diam Ui : F ⊂
⋃

i

U i, {Ui}i a countable cover of F

}
.

Let x ∈R2, V ∈ S1 and ϕ > 0, and denote by S(x, V , ϕ) the closed double cone with vertex in x, direction V and opening 
angle ϕ (see Fig. 2). Let t ∈R. We say that V is a tangent of φ(R) in φ(t) if

∀ϕ > 0, lim
h→0

H1∞ ((φ(R) ∩ B(φ(t),h)) \ S(φ(t),V ,ϕ))

h
= 0.

However, to prove Theorem 3.1 we use an auxiliary, more convenient definition based in the parametrisation φ. Moreover, 
this approach grasps the right-sided and left-sided tangent phenomenon.

Definition 3.3. We say that V ∈S1 is a tangent of φ in t ∈R on the right if

lim
n→∞

φ(t + hn) − φ(t)

|φ(t + hn) − φ(t)| = V

for every sequence hn > 0 converging to zero for which φ(t + hn) − φ(t) �= 0. It is a tangent on the left if the same holds for 
sequences hn < 0. We say that V is a tangent of φ in t is it is a tangent both from the right and from the left.

Theorem 3.1 is therefore a consequence of the following two results. We remark that Proposition 3.5 confirms the guess 
based in Fig. 1a done in the beginning of the section.
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Lemma 3.4. Let V ∈ S1 . If V is not a tangent of φ in t ∈ R as in Definition 3.3, then it is not a tangent of φ(R) in φ(t) as in 
Definition 3.2.

Proposition 3.5. Let p/q be an irreducible rational number.

– If q ≡ 0, 1, 3 (mod 4), there exists an eighth root of unity ep/q ∈C such that

lim
h→0+

φ(tp/q + h) − φ(tp/q)∣∣φ(tp/q + h) − φ(tp/q)
∣∣ = ep/q

1 + i√
2

, lim
h→0+

φ(tp/q − h) − φ(tp/q)∣∣φ(tp/q − h) − φ(tp/q)
∣∣ = ep/q

1 − i√
2

.

– If q ≡ 2 (mod 4), then for every V ∈S1 there exist sequences hn, rn → 0+ such that

lim
n→∞

φ(tp/q + hn) − φ(tp/q)∣∣φ(tp/q + hn) − φ(tp/q)
∣∣ = V = lim

n→∞
φ(tp/q − rn) − φ(tp/q)∣∣φ(tp/q − rn) − φ(tp/q)

∣∣ .
Let ρ be an irrational number. Then, there exists an open set V ⊂ S1 such that, for every direction V ∈ V , there is a sequence hn → 0
such that

lim
n→∞

φ(tp/q + hn) − φ(tp/q)∣∣φ(tp/q + hn) − φ(tp/q)
∣∣ = V .

The proof of Lemma 3.4 is based on the observation that the 1-Hausdorff content H1∞ of a piece of a curve is essentially 
its diameter. On the other hand, Proposition 3.5, like Lemma 2.2, is a consequence of the asymptotic behaviour of φ at points 
tp/q corresponding to rational points. Duistermaat [5] computed (in terms of φD ) the asymptotic behaviour of φ(tp/q + h) −
φ(tp/q) up to the error term h3/2, which is enough for rational points with q ≡ 0, 1, 3 (mod 4). For the rest of rational and 
irrational numbers, the precise expression of the h3/2 term is needed and is computed in [6] following the ideas of [5]. The 
case of rational numbers with q ≡ 2 (mod 4) follows immediately. Finally, as shown in [7], the irrational points are treated 
by their approximations by means of continued fractions.

Acknowledgements

The author is thankful to Valeria Banica, Albert Mas, Xavier Tolsa and Luis Vega for their suggestions and help.
This work was supported by Spain’s Ministry of Education, Culture and Sports [FPU15/03078], the ERCEA [Advanced Grant 

2014 669689 - HADE], the Basque Government [BERC 2018-2021] and the Ministry of Science, Innovation and Universities 
[BCAM Severo Ochoa accreditation SEV-2017-0718].

References

[1] F. Chamizo, A. Córdoba, Differentiability and dimension of some fractal Fourier series, Adv. Math. 142 (2) (1999) 335–354, https://doi .org /10 .1006 /aima .
1998 .1792.

[2] F. Chamizo, A. Ubis, Some Fourier series with gaps, J. Anal. Math. 101 (2007) 179–197, https://doi .org /10 .1007 /s11854 -007 -0007 -z.
[3] F. Chamizo, A. Ubis, Multifractal behaviour of polynomial Fourier series, Adv. Math. 250 (2014) 1–34, https://doi .org /10 .1016 /j .aim .2013 .09 .015.
[4] F. De la Hoz, L. Vega, Vortex filament equation for a regular polygon, Nonlinearity 27 (2014) 3031–3057, https://doi .org /10 .1088 /0951 -7715 /27 /12 /3031.
[5] J.J. Duistermaat, Selfsimilarity of Riemann’s nondifferentiable function, Nieuw Arch. Wiskd. (4) 9 (3) (1991) 303–337.
[6] D. Eceizabarrena, Asymptotic behaviour and Hausdorff dimension of Riemann’s non-differentiable function, preprint, arXiv:1910 .02530.
[7] D. Eceizabarrena, Geometric differentiability of Riemann’s non-differentiable function, preprint, arXiv:1910 .02536.
[8] J. Gerver, The differentiability of the Riemann function at certain rational multiples of π, Amer. J. Math. 92 (1970) 33–55, https://doi .org /10 .2307 /

2373496.
[9] J. Gerver, More on the differentiability of the Riemann function, Amer. J. Math. 93 (1971) 33–41, https://doi .org /10 .2307 /2373445.

[10] G.H. Hardy, Weierstrass’ non-differentiable function, Trans. Amer. Math. Soc. 17 (3) (1915) 301–325, https://doi .org /10 .2307 /1989005.
[11] G.H. Hardy, J.E. Littlewood, Some problems of Diophantine approximations (II), Acta Math. 37 (1914) 193–239, https://doi .org /10 .1007 /BF02401834.
[12] M. Holschneider, P. Tchamitchian, Pointwise analysis of Riemann’s “nondifferentiable” function, Invent. Math. 105 (1) (1991) 157–175, https://doi .org /

10 .1007 /BF01232261.
[13] S. Jaffard, The spectrum of singularities of Riemann’s function, Rev. Mat. Iberoam. 12 (2) (1996) 441–460, https://doi .org /10 .4171 /RMI /203.
[14] C. Pastor, On the regularity of fractional integral of modular forms, Trans. Amer. Math. Soc. 372 (2) (2019) 829–857, https://doi .org /10 .1090 /tran /7418.
[15] K. Weierstrass, Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten 

besitzen, in: Math. Werke II, Königl. Akad. Wiss., 1895, pp. 71–74.

https://doi.org/10.1006/aima.1998.1792
https://doi.org/10.1007/s11854-007-0007-z
https://doi.org/10.1016/j.aim.2013.09.015
https://doi.org/10.1088/0951-7715/27/12/3031
http://refhub.elsevier.com/S1631-073X(19)30217-1/bib447569737465726D616174s1
http://refhub.elsevier.com/S1631-073X(19)30217-1/bib456365697A6162617272656E6131s1
http://refhub.elsevier.com/S1631-073X(19)30217-1/bib456365697A6162617272656E6132s1
https://doi.org/10.2307/2373496
https://doi.org/10.2307/2373445
https://doi.org/10.2307/1989005
https://doi.org/10.1007/BF02401834
https://doi.org/10.1007/BF01232261
https://doi.org/10.4171/RMI/203
https://doi.org/10.1090/tran/7418
http://refhub.elsevier.com/S1631-073X(19)30217-1/bib5765696572737472617373s1
http://refhub.elsevier.com/S1631-073X(19)30217-1/bib5765696572737472617373s1
https://doi.org/10.1006/aima.1998.1792
https://doi.org/10.2307/2373496
https://doi.org/10.1007/BF01232261

	Some geometric properties of Riemann's non-differentiable function
	1 Introduction
	2 Hausdorff dimension
	3 Tangents
	Acknowledgements
	References


