\phaseshift\alpha f(x) = {1/2\pi} \int_{-\infty}^\infty\!\hat f(\xi) e^{i\xi x}e^{-i\sgn\(\xi\)\alpha}\,d\xi
\hat f(\xi) =\int_{-\infty}^{\infty}\!f(t) e^{-i\xi t}\,dt
\sgn\(x\)=\begin{cases}-1&\text{if }x\lt0\\\ \,0&\text{if }x=0\\\ \,1&\text{if }x\gt0\end{cases}
\phaseshift{\alpha}f = \FT^{-1}(\xi\mapsto\FT\!f(\xi)e^{-i\sgn\(\xi\)\alpha})
\FT(f)(\xi) = \int_{-\infty}^{\infty}\!f(x) e^{-i\xi x}\,dx
\FT^{-1}(f)(x) = {1/2\pi}\int_{-\infty}^{\infty}\!f(\xi) e^{i\xi x}\,d\xi
\sgn\(x\)=\begin{cases}-1&\text{if }x\lt0\\\ \,0&\text{if }x=0\\\ \,1&\text{if }x\gt0\end{cases}